

Motivation

- DTA is emerging as a practical tool for numerous planning and operational applications
- Due to the recent advances in DTA, uncertainty remains on model capabilities, implications, etc
- The Primer attempts to address the core issues in DTA models

Motivation: What is a "good" DTA?

- A good model must provide sufficiently sound predictions of system behavior given the necessary resource constraints
- DTA provides a superior representation of traffic, dynamic conditions, and resulting behavior.
 - These benefits come at a computational and implementation cost

Motivation: What is a "good" DTA?

- Are the implementation costs worth the additional descriptive benefit?
- To answer, we must understand the underlying properties
- To understand a DTA approach fully the following must be precisely defined:
 - formulation assumption
 - solution method and
 - traffic model/simulation

Defining DTA

- Three things must be defined fully
 - Problem formulation
 - Solution method
 - Traffic model
- Why is there lack of consensus?
 - "Relatively" new
 - Well over a decade now of work, but there are lags between academic research and implementation.
 - Disconnect between research and practice
 - Solution methods more complex for dynamic than static
- Somewhat similar evolution for static decades ago

Defining DTA

- Static progressed from "primitive" approaches to more advanced solution methods (Sheffi, 1985) over the course of many years:
 - All-or-nothing
 - Capacity restrained
 - Modified capacity restrained
 - Incremental Assignment
 - MSA
 - Frank-Wolfe
 - Many newer advances past FW

Static to DTA: What should NOT Change

- Formulation
- There are two primary assumptions of equilibrium (whether static or dynamic)
 - Users are "greedy"
 - Users are familiar with the system
- While special cases and extensions may be considered (familiarity might be tuned with SUE for instance)
- These assumption should not change fundamentally simply because time is being considered

Formulation/Assumptions

- Behavioral assumptions are critical
- Equilibrium represents one of the simplest cases of behavior
 - But equilibrium requires iteration
- Without sound behavioral assumptions transferability and consistency are not achievable
 - Calibration alone (without sound behavior) does <u>not</u> imply transferability and consistency

Static to DTA: What should NOT Change

- Solution Method
- Static methods often employ at least Frank-Wolfe
- While perhaps <u>not ideal</u>, they provide some measure of
 - Convergence criteria
 - Efficiency
 - Consistency
- These can not be lost in an attempt to model temporal behavior

Why worry about formulation/method?

- Based on the assumptions of the problem formulation and the solution method
 - Substantially different results will be observed
 - Consistency will also alter dramatically and may be fully unachievable

Examples for Static

- For DTA, we first need to be sure on static methods
- First we need a static formulation
- This has been well established

$$min \sum_{a} \int_{0}^{x_{a}} c_{a}(\omega) d\omega$$

$$s.t.$$

$$\sum_{k} h_{k}^{rs} = q_{rs}$$

$$h_{k}^{rs} \ge 0$$

$$\forall k, r, s$$

$$x_a = \sum_r \sum_s \sum_k h_k^{rs} \mathcal{S}_{a,k}^{rs}$$

 $\forall a$

For Static: Solution Methods

- Many solution methods work by "linearizing" the non-linear objective.
- The linearized version is simply the gradient of the function
- For UE, we are very lucky.
- Basically, by taking derivatives, the integrals disappear, leaving simply the cost functions!
- Therefore, to solve the linear problem we simply need to find the shortest path!
- This must be done many times though.

Static: Example of solution methods

- Quick examples of
 - Method of Successive Averages (MSA)
 - Frank Wolfe (FW)
- Closely see differences from solution method
 - Even when assumptions/formulation the same
- For DTA analogy

MSA - Iteration 3

$$x = [5 5]$$

$$10 + x_2^2 = 35$$

So All-or-nothing flow assignment is $x_1' = 10$ and $x_2' = 0$

or
$$x_i = (1/3) x' + (1 - 1/3) x_{old}$$
 so

$$x_1 = (1/3) 10 + (2/3) 5$$
 = 6.66666
 $x_2 = (1/3) 0 + (2/3) 5$ = 3.33333

Calculate new costs based on these flows

MSA - Iteration 4

 $x = [6.666666 \ 3.3333333]$

$$1 + x_1^2 = 45.4$$

$$10 + x_2^2 = 21.9$$

So All-or-nothing flow assignment is $x_1' = 0$ and $x_2' = 10$

or
$$x_i = (1/4) x' + (1 - 1/4) x_{old}$$
 so

$$x_1 = (1/4) \ 0 + (3/4) \ 6.66666 = 5$$

 $x_2 = (1/4) \ 10 + (3/4) \ 3.33333 = 5$

$$x_2 = (1/4) \cdot 10 + (3/4) \cdot 3.333333 = 1$$

Calculate new costs based on these flows

MSA - Iteration 5

$$x = [5 5]$$

$$10 + x_2^2 = 35$$

So All-or-nothing flow assignment is $x_1' = 10$ and $x_2' = 0$

or
$$x_i = (1/5) x' + (1 - 1/5) x_{old}$$
 so

$$x_1 = (1/5) 10 + (4/5) 5 = 6$$

 $x_2 = (1/5) 0 + (4/5) 5 = 4$

Calculate new costs based on these flows

MSA - Iteration 6

 $x = [6 \ 4]$

$$10 + x_2^2 = 26$$

So All-or-nothing flow assignment is $x_1' = 0$ and $x_2' = 10$

or
$$x_i = (1/6) x' + (1 - 1/6) x_{old}$$
 s

$$x_1 = (1/6) 10 + (5/6) 6$$
 = 6.66666
 $x_2 = (1/6) 0 + (5/6) 4$ = 3.33333

Calculate new costs based on these flows

MSA		
Iter 7Iter 8Iter 9Iter 10	Costs = [26 Costs = [37 Costs = [26 Costs = [31.9	26] 35]

Finding λ

- Regardless of network size, number of zones, etc. there is a <u>single</u> variable λ
- Finding a single variable is relatively easy as long as we have an <u>objective f(λ)</u>
- For static that comes directly from the formulation we stated

Simulation-based DTA: Time-Dependent Shortest Path

- Analogous to Shortest Path in static UE
 - Given an arrival time at destination (or departure time from origin), find shortest path
 - Link travel time depends on time of arrival
 - Relatively high fidelity may be needed to capture the impact of control, etc

Simulation-based DTA: Path Assignment Component

- Multiple emerging DTA methods include:
- Method of Successive Averages
 - Uses fixed path splits over iterations
- Simplicial Decomposition
 - Employs objective functions
- Other "gap-based" methods

Supply: Desired Features of a Traffic Flow Model

- Ability to model:
 - Bottlenecks
 - Link Spillover
 - Shockwave Propagation
- The correct modeling of these issues are critical to Dynamic Traffic Assignment

Modeling Congestion

A typical BPR volumedelay function:

$$t(v) = t_o \cdot \left(1 + \left(\frac{v}{c}\right)^{\alpha}\right)$$

VCTR

Modeling Congestion

Even simple traffic models provide a more accurate representation.

$$u(k) = u_f \cdot \left(1 - \frac{k}{k_j}\right)$$

$$q = u \cdot k$$

$$t(u) = \frac{t_0 \cdot u_f}{u}$$

Given the same flow, two travel times are possible. The difference is **density.**

Convergence

- Ideally, we would like to know:
 - "How far is the current solution from equilibrium?"
- Running "until things stop changing" may be problematic
 - Convergence of system cost may not imply convergence of link flow
 - Convergence of link flow may not imply equilibrium path costs

Simulation-based DTA: Path Assignment: Distance to Equilibrium

- DTA convergence offers opportunities
- An example of an equilibrium "gap" function
- Given an O-D with three used routes A, B and C:

Path	Flow	Travel Time	Least Travel Time	Gap
A	10	5	3	20
В	20	6	3	60
C	30	3	3	0

80

Research Comparing DTA to Static

- It is surprisingly difficult to compare static and dynamic
 - If attempted incorrectly will greatly confound consistency of analysis
 - Another impact of V/C > 1 issues and such
- Also an issue because of boundary conditions/transient behavior
- If peak period analysis is attempted with DTA, a warm-up cool-down period is required
 - 24-hr modeling may be best approach

- The previous approach to DTA is essentially:
- Equilibrium on Experienced Travel Cost
- Numerous other models exist
 - Non-equilibrium approaches
 - "One-shot" Models
 - Instantaneous Travel time Models

		ous Trave					
Time	B	ink Travel Times	Ĉ.	**			
0	1	2	3				
2	1	3 4	4				
3	1	3	5				
4	2	3	5				
If dep	If departing at time 1:						
■ Instantaneous travel time = 6 (just add up first row)							
Experienced travel time =							
Link 1 travel time (at time 0) = 1							
Link 2 travel time (at time 1) = 3							
Link 3 travel time (at time 4) = 5							
Experienced Travel Time = 9							

One-shot Modeling

- "One-shot" models do not attempt an equilibrium in the previously described sense
- Traffic does spread over routes but not due to equilibration
 - One approach is to base route choice decisions at time T no congestion up to time T
 - For instance, use instantaneous travel times
- Most similar to incremental approaches for static assignment

Harsh Truth #1: Disequilibrium Versus Non-Convergence

- It is occasionally noted that traffic isn't really in equilibrium so why worry about it?
- However, if we want to use DTA for planning then we must have stable solutions
 - If noise or randomness substantially impact the solution, the results are not defensible in a planning context
 - Further, explainable behavior is important

Harsh Truth #1: Disequilibrium Versus Non-Convergence

- There is ongoing research into "disequilibrium" (or transient) traffic modeling.
 - However, this research is clearly distinct from nonconvergence
 - Put simply, stopping an equilibrium model prior to convergence is <u>not correct</u> (and is not supported by arguments related to traffic disequilibria)
 - For planning applications, any disequilibrium network model must still provide a stable solution (and current options for this appear limited)
 - Equilibrium remains the simplest approach to generate stable solutions for planning applications

Harsh Truth #2: Costs of DTA

- If a DTA approach does not result in substantially higher computational costs, there are two highly likely reasons:
 - Very few (if any) behavioral advantages are being obtained
 - Substantial sacrifices are being made in terms of solution quality, convergence, stability, etc
- However, many questions can only be answered given the superior behavioral representation of DTA

Conclusions

- A wide variety of models may currently be termed DTA
- Without any modifying term, the Primer defines DTA as an Equilibrium Based on Experienced Travel Cost
- Equilibrium remains the simplest approach to obtain stable solutions for planning applications
- Convergence and stability are still absolutely critical for planning applications (using DTA should not change this)
- As a new consideration for planners, traffic realism is also critical

